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The effect of cold working and annealing on the stacking fault probabilities in h.c.p, cobalt has 
been studied. The composite broadening has been attributed to three causes - -  particle size, lattice 
strain and stacking faults. The particle-size and strain broadening have been separated in each case. 
The assumed strain models were both of Gaussian and Cauchy types. Line breadth measurements 
have been also carried out. Fault parameters decreased with annealing but there was no evidence 
of complete amfihilation. 

I n t r o d u c t i o n  

Anomalous line broadening in hexagonal close-packed 
cobalt was first noticed by Van Arkel (1939) who ex- 
plained it in terms of impurity content, but broadening 
due to a fault which breaks the regular sequence of 
close packed atomic layers has been studied by 
Edwards & Lipson (1942). Their main finding was 
that  the broadening of lines from hexagonal cobalt 
differs for different reflexions in a way which cannot 
be explained solely on the basis of particle size or strain; 
considerations of growth faulting and the assumption 
of its regular occurrence could explain the apparent 
discrepancies in line broadening. Wilson (1942) 
developed a theory which considered the random 
distribution of faults, and showed that  in h.c.p, cobalt 
the reflexions with 1 even were broadened more than 
those with 1 odd and that  there was not much change 
in the total intensity of the reflexions. Wilson's theory 
also provided for calculations of the probability of 
faulting. The frequency of faults in Edwards & Lip- 
son's (1942) specimen was calculated on this theory 
and it was found that  on the average there occurred 
about one faulty plane in every ten. The first systematic 
investigation of faulting in h.c.p, cobalt was carried 
out by Anantharaman & Christian (1956). They 
performed a line shape analysis, confining their atten- 
tion to the {101} line. They observed that  in addition 
to the growth faults deformation faults also occurred 
in the sample. The spontaneously transformed cobalt 
sample studied by them contained growth faults 
predominantly, whereas deformed cobalt after complete 
martensitic transformation showed mainly deforma- 
tion faulting. Further investigations were carried out 
by Houska & Averbach (1958) and Houska, Averbach 
& Cohen (1960). These workers have studied the 
correlation between phase change principle and 
stacking fault density. 

In spite of all these advances, there remained 
many more questions to consider, for instance - -  
distribution of either of the faults, the effect of 
temperature of annealing on the faults, the amount of 
broadening due to small domain size and lattice strain 

in the fault-broadened reflexions, the influence of 
elastic anisotropy on the distribution of strain and 
stress. The present investigation is an at tempt to 
elucidate some of these. None of the previous investi- 
gators has attributed the line broadening to all three 
possible causes; they have neglected the effect of 
domain size and lattice strain. This omission is partly 
justified in the transformed specimens but it is not 
necessarily correct in every case. Also the strain 
distribution function considered earlier was only of 
the Cauchy type. Keeping all these points in view, 
it has been decided he1 e to apply the recently developed 
theories, referring to the three possible causes, to the 
study of particle size, lattice strain and stacking faults 
in faulted h.c.p, cobalt. 

R e v i e w  of theor i e s  of fault  p r o b a b i l i t y  in 
the h.c.p,  s t r u c t u r e  

Wilson (1942) developed a theory for calculating fault 
probability in h.c.p, crystals. He showed that only 
reflexions affected by stacking faults have h -  k = 3t _+ 1 
with all values of 1 except zero. This theory, however, 
is only applicable to crystals having growth faults. 
Christian (1954) has suggested an independent method 
of calculating deformation fault probability in h.c.p. 
crystals. He showed that  the integral breadths of the 
lines in an h.c.p, crystal with deformation faulting are 
identical with those in a similarly faulted f.c.c, crystal 
(Patterson, 1952). Gevers (1954) has treated a more 
general case which has been later extended by Anan- 
tharaman & Christian (1956). Warren (1959) has 
suggested a method which is more useful and system- 
atic. He has used the full width at half maximum 
intensity and derived the expressions 

~or l even 

B½(20) = (360/z 2) tan 0 Ill (d/c)2(3a + 3fl), 

for 1 odd 

(1) 

B½(20) = (360/g 2) tan Oil] (d/c)e(3oc +fl), (2) 

where d is the interplanar spacing of the reflecting 
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plane, c = 2d00% B½(20) the width at  half maximum 
intensi ty  expressed in degrees, a the deformation fault 
probabil i ty and fl the growth fault probability. 

In  the theories which have been discussed above, 
only the line breadths are measured from which fault  
probabilities are calculated. Houska & Averbach (1958) 
have developed a method of line shape analysis for 
h.c.p, crystals. They showed tha t  the diffracted power 
per unit  arc length is 

P~0 = ::f('rAPASFAD--::n--n --n exp 2~inh~ (3) 
where 

the particle size coefficients 

A P = Nn/N, (4) 

the distortion coefficients 

A2 = <exp (x~h + ynk + znl)>, (5) 

the stacking fault  coefficients 

AS~ 3 o iva /2(p+_p~ ) = (~P~-½) + (6) 

in which po, p+  and P~ represent the probabilities for 
finding the relative translations (0, 0, 0), (~, ½, 0) and 
(_~,~ -~,1 0), respectively, at  a separation of n layers 
and K' is a constant not affecting the peak shape 
with h~ the corresponding orthorhombic indices. :From 
this theory it  is seen tha t  AS~=l .00  for h - k = 3 t  
(t being an integer,) and accounts for fault broadening 
only for reflexions of the type h - k = 3 t  + 1. From a 
plot of logarithmic stacking fault coefficients versus 
n one can estimate a and ft. Probably the approach of 
Warren (1959) is easier and his theory can be applied 
to particle size and strain separately. The power 
distribution per unit  length is now described by 

P~o = K'ZASA2 cos 2~n(h~-l') (7) 

in which (h~-l') = 2[aa[ (sin 0 - sin 00)/2 where [38] is a 
fictitious distance chosen to correspond to the sin 0 
interval within which the peak is expressed as a 
Fourier series. The coefficients A s include the effect 
of both domain size and faultings. Then from the 
initial slopes of the graphs A s against L, where L is a 
measure of distance and is obtained from Warren 's  
(1959) formula, i t  can be shown tha t  

for h - k  = 3t + 1 and 1 even 

-(dA~/dL)o= 1/D+(]lld/c~)(3a+Sfl), (8.1) 

for h - k  = 3t + 1 and 1 odd 

-(dASL/dL)o = 1/n+(tlld/c2)(3a+fl), (8.2) 

and for h - k  = 3t 

-(dAS/dL)o = 1/n ,  (8.3) 

where D is the average particle size. If one assumes 
1/D to be negligibly small or constant for several 
planes, estimation of a and fl becomes simpler. 

Der ivat ion  of an e x p r e s s i o n  for in tegra l  
w i d t h  of the faulted re f l ex ion  

For a faulted hexagonal crystal the peak shape is 
described (Warren, 1959) by 

+c¢ 1 - -  x 2 

Y = m= ~-~ xtaT cos ~m (h a - l) = 1 + x 2 -  2x cos 7~(ha - l) 

where (9) 
x =  1 - (3~+3f l ) / 2  for 1 even (10.1) 

and 
x = 1 - ( 3 3 + f l ) / 2  for 1 odd. (10.2) 

Now it can be seen tha t  Y is maximum at ( h s - l ) =  0 
and minimum at ( h a - l ) =  + ½. 

Therefore Yma~ = (1 + x)/(1 - x). (11) 

The integral width can be writ ten 

B~(h3) = I~i Yd(hs-1) 
Ymax (12) 

o r  

B~(ha) 4 ( 1 - x ) t a n - l ( l + x ~  
-- g(1 + x) \1 -x]" (13) 

Since the quant i ty  x _~ 1 the above expression to a good 
approximation becomes 

B~(hs) = ( l - x ) .  (14) 

This can be compared with Warren's expression 

B½(hs) = 2 / ~ ( 1 - x )  (15) 

where the width at  half maximum intensity has been 
used. On the powder pat tern  if B~(20) be the integral 
width expressed in degrees then from a relation (Fig. 1) 

J 

B3Ah3 

/83 

0 

Fig.  l .  R e l a t i o n  b e t w e e n  t h e  d i f f r a c t i o n  v e c t o r  
a n d  t he  h e x a g o n a l  axes .  

between the diffraction vector and the hexagonal axes 
it can be seen tha t  

B~(20) = 1802]B3l sing0B~(hs) (16.1) 
COS 0 

where 
l/]B3] = c = 2d002 (16.2) 

and 
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Isin~l  = I/11B31d. (16.3) 

Combining equations (14) and (16) we now obtain 
for 1 even 

B~(20) = (180/z) tan  0 Ill (d/c)e(3~ +38) (17.1) 

and for 1 odd 

Bi(20) = 180/ztanO]ll(d/c)e(3~+~). (17.2) 

Sample preparation and X-ray diffraction 
procedure 

Cobalt rods supplied by Johnson, Matthey and Co., 
Ltd., London, have been used for the present investiga- 
tion. Spectroscopic analysis showed traces of iron and 
nickel. All measurements were conducted with fine 
grained powder filed from cobalt rods. Powder was 
prepared from the rods by grinding with an alundum 
wheel and then magnetically separated. The samples 
were passed through a sieve having 300 meshes per 
square inch and then subjected to heat t rea tment  in an 
electric vacuum furnace. The input voltage was 
stabilized and controlled. The samples were put  in 
quartz tubes with one end sealed and heated slowly. 
Six samples were heated for twenty-four hours at  
temperatures of 100, 200, 300, 410, 500 and 600 °C 
respectively. The cooling was controlled in the furnace 
itself and kept very slow so tha t  it  reached room 
temperature after about twenty-four hours. A differ- 
ence of temperature of the order of _+ 2 °C was easily 
detected with a chromel-alumel thermocouple. The 
annealed samples needed pulverizing to enhance h.c.p. 
formation. With an agate mortar  and pestle this 
process took about 150 to 200 blows and thereby 
checked (Anantharaman, 1960) f.c.c, phase transforma- 
tion at room temperature.  

Thin cylinders about 0.5 mm in diameter were rolled 
on clean glass plates after mixing the cold worked 
and annealed powder with a dilute solution of collodion 
in amyl acetate. Throughout the work a Norelco dif- 
fraction unit, and cobalt radiation filtered through an 
iron filter and monochromatized by a bent quartz 
crystal monochromator, were used. The photographs 
were taken in a Unicam 9 cm vacuum powder camera. 
The intensity distributions in the powder lines were 
first determined with the help of a Withol chart 
recording microphotometer and then repeated with a 
Hilger non-recording microphotometer. With the lat ter  
instrument the readings were taken every quarter 
rotation of the micrometer screw. By comparing the 
two sets of microphotometer plots, it was possible to 
construct the intensi ty profile of individual diffraction 
lines. Finally, the tails of all the diffraction profiles 
were carefully recovered from the background level 
of the microphotometer tracing by the method of 
envelopes. Details of this experimental technique have 
already been described by Halder (1963). 

Fourier analysis of the line shapes 

All the line profiles were corrected for instrumental  
broadening with the profiles of the fully annealed 
sample at  600 °C. The nearest fault-free lines were 
chosen for the correction of stacking-fault broadened 
reflexions 101, 102 and 103. The Fourier coefficients 
were determined by Stokes's (1948) method and plot ted  
against L, where L is calculated from L=n[asl and 
)asJ from 

2 In31 (sin 0 - sin 00) =+½, 

0 and 00 corresponding to the Bragg angles for which 
the height of the intensi ty profile is maximum and 
minimum. The particle size and strain for these 
reflexions are considered to be the same as those for 
100, 110, 200, 002 and 004. Though hexagonal cobalt  
is anisotropic, this approximation is justified. Halder  
(1963) has shown tha t  the anisotropy factor in the  
case of deformed and annealed cobalt is not very large, 
the mean deviation from mean strain being about 6% 
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Fig. 2. (a) P lo t  of the  part ic]e  size coefficients  v e r s u s  dis tance  
for cold worked  h.c.p,  cobal t .  (b) P]o t  of the  r.m.s, s t ra in  
v e r s u s  dis tance  for cold w o r k e d  h.c.p, cobal t .  Bo th  (a) a n d  
(b) ob ta ined  af ter  assuming Gaussian d i s t r ibu t ion  of s t ra in .  
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Fig.  3. (a) Plot  of the particle size coefficients v e r s u s  distance 
for cold worked h.c.p, cobalt .  (b) P l o t  of the root  mean  
square strain v e r s u s  distance for cold worked h.c.p, cobalt .  
B o t h  (a) and (b) obta ined  after assuming  Cauchy distribu- 
t ion of strain. 
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Fig. 4. P lot  of the s tacking fault  coefficients v e r s u s  distance 
for (a) cold worked and (b) annealed (at 500 °C) h . c .p .  
cobalt .  P lots  for other annealed samples  are similar and 
consequent ly  not  shown here. 

and that from mean particle size being negligibly 
small. Besides, there is no other suitable reflexion which 
can be used to find the particle size and strain only in 
10/ directions for which faultings are being studied. 
To avoid this difficulty to a good approximation the 
'average' values of the particle size and strain of the 
fault-unaffected reflexions 100, 110, 200, 002 and 004 
have been taken. For a hexagonal crystal the distor- 
tion coefficients are given (Warren, 1959) by 

( 2~9L2 ) 
A 2 = e x p  de <el> 

for Gaussian distribution of strain and 

~ L  ) 
Af = exp - ~ <4> 

for Cauchy distribution of strain, where d is the 

interplanar spacing of the reflexion, C the cut-off 
point (after Williamson & Smallman, 1954) and (s~} 
the mean-square strain averaged over a distance L. 

Graphs were plotted for lnAL against 1/d 2 and lnAL 
against 1/d for different values of L. The intercepts 
gave directly the coefficients of particle size and the 
slopes the strain. The particle size and strain plots are 
~h0w~ in Figs. 2 and 3. The strain values thus obtained 
have been utilized to correct the coefficients of fault- 
broadened reflexions for distortion broadening. The 
plots of coefficients against L are shown in Fig. 4(a), 
(b), the former for the cold worked sample and the 
latter for that annealed at 500 °C. Then the equations 
(8) gave a and fl directly when the average value of D 
was substituted. These values are given in Table 4, 
where the difference between the two sets shows the 
effect of annealing on recovering of the stacking faults. 
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Strain and particle  s ize correct ions  in the l ine 
breadth  m e a s u r e m e n t s  

The line breadth measurements have been also made 
after recovering the pure diffraction profiles. The 
particle-size and strain broadening for these reflexions 
were corrected from the broadening of the fault-free 
reflexions as follows. 

Let us consider that the total line breadth of the 
faulted reflexions 101,102 and 103 be written as 

B i  = ( K 1 / c o s  0 ) - b K 2  tan O+B~ (18) 

where B~ is the integral width when all the effects 
are present. The first and the second term of the right 
hand side take account of the particle-size and strain 
broadening respectively. The constants K1 and K2 can 
be determined from 100,110,200,002 and 004 reflexions. 
Halder & Mitra (1963) have separated the particle size 
and strain broadening for these reflexions where it has 
been shown that  there is slight anisotropy in these two 
quantities. With the same arguments as in the previous 
section and also following Rao & Anantharaman (1962), 
if the anisotropy factor is neglected, it is possible to 
know K1 and K2.  Actually KI=2/D and K2=2e 
where 2 is the wave length of the radiation used, D the 
mean particle size and e the mean strain. Thus 
evaluated K1 and K~ are shown in Table 1. 

With these values when the first two terms are 
computed the results shown in Table 2 are obtained. 

Expressing B F in degrees and using equations (17) 
another set of c¢ and fl has been calculated. This is 
shown in Table 4, 

Resul t s  and d i scuss ion  

The particle size and strain obtained from line shape 
analysis are shown in Table 3. The fault probabilities 

Table 1. Value of the constants K1 and K~ 

T e m p e r a t u r e  K 1 (10 -z) K s (10 -a) 

25 °C 1.58 11.10 
100 1.21 9.30 
200 0.88 6.80 
300 0.72 4.70 
410 0.50 3.10 
500 0.30 2.00 

Table 2. Corrected integral widths of 101 and 102 
and 103 reflexions 

Bi F (10 -a) (radians) 
r 

Temp.  (°C) 101 102 103 

25 20.56 55.93 46.44 
100 16-38 42-00 37.00 
200 13.22 33.60 29.85 
300 10.39 29.38 23.46 
410 8.55 26.37 19.31 
500 7.17 23.56 16.18 

measured from three different considerations are also 
illustrated in Table 4. 

The reflexions of type h - k  = 3t (t being an integer) 
are much sharper than those of type h -  k = 3t + 1(1 # 0). 
This is because in the former type the broadening is 
due to particle size and lattice strain whereas in the 
latter type an extra broadening due to faulting has 
been added. In this investigation the interLsity distribu- 
tion in the diffraction lines has been analysed by two 
different methods, viz, (a) line shape analysis by the 
method of Warren (1959) and (b)line breadth measure- 
ment by the method due to Hall (1949) .The domain 
size obtained by line shape analysis is quite small 
(250---1800 ~) and so is the strain (0.0015---0-0005). 
But the line breadth measurements show compara- 
tively higher particle sizes (I000~-,6000 ~) and greater 

Table 3. Particle size and lattice strain determined from line shape analysis and line breadth measurement 
Line shape  analysis  

^ Line b r ead th  
Gaussian s t ra in  Cauchy  s t ra in  m e a s u r e m e n t  

Tempera tu re  D <s2>~o  D <s2>~o  D <e> 

25 °c 246A 0.00108 633 A 0.00145 1125 A 0.00555 
100 430 0 .00090 780 0 .00132 1480 0-00465 
200 680 0 .00076 900 0 .00120 2020 0 .00340 
300 830 0.00065 115o 0.00102 2415 0-00235 
410 1000 0"00057 1400 0"00093 3340 0.00155 
500 1120 0"00052 1760 0"00081 5970 0"00100 

Table 4. Fault probabilities from line shape analysis and line breadth 
Line shape analysis 

measurement 

Gaussian 

Temperature 51 fl; 

25 °C 0.021 0.051 
100 0.018 0.040 
200 0.012 0.036 
300 0.008 0.034 
410 0.006 0.032 
500 0.004 0.030 

Cauehy  
w, 

52 ~2 
0.029 0.047 
0.023 0-034 
0.015 0.034 
0.009 0.034 
0.007 0.029 
0.007 0.022 

Line b r e a d t h  
m e a s u r e m e n t s  

~3 ~3" 
0.009 0.014 
O.0O8 0-010 
O.OO7 0.0O7 
0.005 0.008 
0.003 0.008 
O.OO3 O.OO7 



822 STACKING F A U L T  P R O B A B I L I T I E S  IN H E X A G O N A L  COBALT 

strains (0-0055~0.0010). I t  therefore appears that  
though the magnitudes of domain sizes and strain are 
different in these two analyses, their relative contribu- 
tion to the total broadening is more or less the same. 

Michell & Haig (1957) have investigated deformed 
nickel filings and found that  the particle sizes obtained 
by line shape analysis are smaller than those obtained 
by line breadth measurements. The divergencies are 
due to the different quantities they measure. While 
the line shape analysis measures the average thickness 
of the coherently diffracting columms of layers in the 
hkl direction the line breath analysis measures the cube 
root of the average particle volume. Also we have not 
considered the particle size distribution function which 
affects the tails of line profiles. This means that  some 
amount of uncertainty is always introduced in the line 
shape analysis. These two reasons perhaps explain the 
different values of the two measurements. 
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Fig. 5. Plot of the deformation (a) and growth (fl) fault 
probabilities versus temperature for cold worked and 
annealed h.c.p, cobalt. 

The plots of deformation and growth fault proba- 
bilities are shown in Fig. 5. Both of them decre~0 
with the grain growth, a decreases at a faster rate 
than ft. Houska, Averbach & Cohen (1960) obtained 
results in agreement for c~ but have not reported any 
definite trend for ft. This is probably due to the effects 
of particle size and lattice strain which they considered 
to be insignificant in course of their investigation. 
I t  is also obvious from Fig. 5 that  the annealing out 
of a deformation fault may be possible whereas the 
growth fault continues to exist. This is also in ac- 
cordance with the sharpening effect of the reflexi'ons; 

i.e. the reflexions with 1 odd become relatively sharper 
than those with 1 even with annealing. A possible 
explanation has been suggested by Houska, Averbach 
& Cohen (1960). The unstable f.e.c, phase which has 
been formed during the annealing process and 
comprises mainly deformation faults is restored to 
the stable h.c.p, phase during the cooling process 
and hence the deformation faulting decreases. 

I t  is also observed that  the faults are not equally 
distributed, fl being always greater than a. Mitra 
(1963) has recently shown that for deformed and 
annealed metals, the strain distribution is neither 
Gaussian nor of the Cauchy type, but lies between 
these two extremes. Assuming this result to hold good 
also for cobalt, the strain distribution can be taken to 
be approximately the mean of the two extreme cases. 
Hence the average values of ~ and fl are taken for the 
considerations which follow. At about 500 °C fl = 0-026 
and a=0.006. Now if, as suggested by Houska & 
Averbach (1958), the line {102} in Fig. 4(b) can be 
considered as consisting of two linear parts as shown 
by the dashed line in the figure, the slope of the dashed 
line gives c~ = 0.004 and fl negligibly small. This shows 
that  at this temperature some martensitic transforma- 
tion (Houska & Averbach, 1958) has taken place with 
the formation of two out of phase h.c.p, cobalt. We 
have considered only the {102} line because experi- 
mentally this line appeared to be superposition of one 
broad and one sharp line (Edwards & Lipson, 1942; 
Houska & Averbacb, 1958). 
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